CHAPTER 1 AUDIO & HI-FI ## **QQ1** AUDIO-CONTROLLED MAINS SWITCH It is often useful for audio or video equipment to be switched off automatically after there has been no input signal for a while. The function of the on-off switch in such equipment is then taken over by switch S₂ in the accompanying diagram. It remains, however, possible to switch off manually by means of S₁. Automatic switch-off occurs after there has been no input signal for about 2 minutes: this delay makes it possible for a new record or cassette to be placed in the relevant machine. The audio input to the proposed circuit may be taken from the output of the relevant TV set, amplifier, or whatever. The input earth is held at +6 V with respect to the circuit earth by potential divider R₁-R₂-R₃-R₄. The two 741s function as comparators: the output of IC₁ goes high when the input signal is greater than +50 mV, whereas the output of IC₂ goes high when the input of IC₂ goes high when the input signal becomes more negative than —50 mV. Resistors R₆, R₇, and R₈ form an OR gate that drives transistor T₁. If the output of either IC₁ or IC₂ is logic 1, T₁ conducts. The 555 operates as a retriggerable monostable, whose period is determined by R₁₀ and C₁. The device is triggered when its pin 2 is earthed by the closing of S₂. Its output, pin 3, then remains high for 1 to 2 minutes, depending on the leakage current of the 555. The monostable resets itself as soon as the potential across C₁ exceeds a certain value. As long as there is an input signal to the circuit, T₁ conducts and C₁ remains uncharged. As soon as the audio signal ceases, T₁ switches off, and C₁ charges until the potential across it is sufficient to reset the 555. The monostable may also be reset by closing S₁, which connects pin 6 of the 555 to +12 V. When IC₃ is reset, C_1 is discharged via its pin 7. Resistor R_{11} serves as protection, because without it T_1 could short-circuit the supply lines. When the output of IC₃ goes high, T₂ conducts, the relay is energized, and the relay contacts switch on the mains voltage as appropriate. To counter the induced potential when the relay contacts close, which could damage T₂, diode D₁ has been connected in parallel with the relay coil.